<table>
<thead>
<tr>
<th>UNIT TITLE</th>
<th>BASE STANDARD(s) COVERED</th>
<th>EXTENSION</th>
<th>ACTIVITIES</th>
</tr>
</thead>
</table>
| Exploring Energy through Rube Goldberg | -6.1 E) A method is devised to test the validity of predictions and inferences | *Expanding skills/knowledge of different forms of energy and the ways that simple machines convert energy from one form to another
*Demonstrating through simple machines that with minimal amounts of work put in, the force applied to objects is greater
*Using demonstrations/activities to show that when multiple simple machines are placed together, a relatively simple task can be completed | *Exploratory - 6 station simple machines activity
*Cartoon drawing/minature 4 step Rube Goldberg machine building-get the ball into the cup
*10-16 step Rube Goldberg machine- make the buzzer BUZZ. |
<table>
<thead>
<tr>
<th>UNIT TITLE</th>
<th>BASE STANDARD(s)</th>
<th>EXTENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploring Energy through Rube Goldberg</td>
<td>-6.1 E) A method is devised to test the validity of predictions and inferences</td>
<td>Expanding skills/knowledge of different forms of energy and the ways that simple machines convert energy from one form to another
 Demonstrating through simple machines that with minimal amounts of work put in, the force applied to objects is greater
 Using demonstrations/activities to show that when multiple simple machines are placed together, a relatively simple task can be completed
 Exploratory - 6 station simple machines activity
 Cartoon drawing/miniature 4 step Rube Goldberg machine building- get the ball into the cup
 10-16 step Rube Goldberg machine- make the buzzer BUZZ.</td>
</tr>
<tr>
<td>Attack of the Invasive Species!</td>
<td>-6.7a) the health of ecosystems and the abiotic factors of a watershed
-6.7f) major conservation, health, and safety issues associated with watersheds
-6.9c) the mitigation of land-use and environmental hazards through preventive measures
-6.9d) cost/benefit tradeoffs in conservation policies</td>
<td>Introducing the skills for identifying and eradicating an ecosystem of non-native species
 Identifying methods of preventing the introduction of invasive species to an ecosystem
 Using media to get out the message of the dangers of invasive species-storyboards, slogans, and public service announcements
 Possible extension could include an after school club to begin ridding Benton and the nature trail of identified invasive plant species
 Identify Vocabulary for Invasive Species
 Guided Tour of Benton property to learn to properly identify and remove invasive species from the grounds (led by Master Gardners of PWC)
 Generate a Flow Chart-map out invasive species in the U.S., focus on Virginia (follow the path for how the species got to the United States and to Virginia)
 Construct a storyboard on ways invasive species spread
 Create a press release on ways invasive species spread
 Design a “Call to Action” slogan and Public Service Announcement, (video, rap, rhyme) Record and Present using Sway or Power Point Video (or other approved app) (Flow Chart->Storyboard->Press Release->PSA presentation)</td>
</tr>
</tbody>
</table>
| The Albedo Effect: Building a Smarter Future | -6.1a) Observations are made involving fine discrimination between similar objects and organisms.
-6.1.h) Data are analyzed through graphical representations.
-6.1.i) Models and simulations are designed and used to illustrate/explain phenomena and systems.
-6.3.a) Earth's energy budget
-6.3.b) The role of radiation and convection in the distribution of energy.
-6.3.e) The role of thermal energy in weather-related phenomena.
-6.6.b) Pressure, temperature, and humidity
-6.6d) Natural and human-caused changes to the atmosphere and the importance of protecting and maintaining air quality.
-6.9.d) Cost/benefit tradeoffs in conservation policies. | *Gaining a better understanding of how and why materials absorb and reflect heat.*
 Recording data from the school grounds to see what areas collect the most heat.
 Developing strategies to reduce heat collection in areas that people will inhabit.
 The importance of energy conservation and better building practices to benefit the air quality of populated areas.
 Real world data collection: Students will be planning areas to record temperature measurements using a thermometer and light meter based on the school map and building materials.
 Engineering design: Students will record temperatures on a roofing shingle exposed to a heat lamp. They will then be tasked to make a scale model of a playground using a variety of building materials to prevent heat collection.
 Digital Graphs: Students will be responsible for creating digital graphs using the data they collected in two of the activities in Excel.
| The Albedo Effect: Building a Smarter Future | -6.1a) Observations are made involving fine discrimination between similar objects and organisms.
-6.1.h) Data are analyzed through graphical representations.
-6.1.i) Models and simulations are designed and used to illustrate/explain phenomena and systems.
-6.3.a) Earth’s energy budget
-6.3.b) The role of radiation and convection in the distribution of energy.
-6.3.e) The role of thermal energy in weather-related phenomena.
-6.6.b) Pressure, temperature, and humidity
-6.6d) Natural and human-caused changes to the atmosphere and the importance of protecting and maintaining air quality.
*Recording data from the school grounds to see what areas collect the most heat.
*Developing strategies to reduce heat collection in areas that people will inhabit.
*The importance of energy conservation and better building practices to benefit the air quality of populated areas. | *Real world data collection: Students will be planning areas to record temperature measurements using a thermometer and light meter based on the school map and building materials.
*Engineering design: Students will record temperatures on a roofing shingle exposed to a heat lamp. They will then be tasked to make a scale model of a playground using a variety of building materials to prevent heat collection.
*Digital Graphs: Students will be responsible for creating digital graphs using the data they collected in two of the activities in Excel. |